A Comparison of Algorithms for Solving the Multiagent Simple Temporal Problem
نویسندگان
چکیده
The Simple Temporal Problem (STP) is a popular representation for solving centralized scheduling and planning problems. When scheduling agents are associated with different users who need to coordinate some of their activities, however, considerations such as privacy and scalability suggest solving the joint STP in a more distributed manner. Building on recent advances in STP algorithms that exploit loosely-coupled problem structure, this paper develops and evaluates algorithms for solving the multiagent STP. We define a partitioning of the multiagent STP with provable privacy guarantees, and show that our algorithms can exploit this partitioning while still finding the tightest consistent bounds on timepoints that must be coordinated across agents. We also demonstrate empirically that our algorithms can exploit concurrent computation, leading to solution time speed-ups over state-of-the-art centralized approaches, and enabling scalability to problems involving larger numbers of loosely-coupled agents.
منابع مشابه
A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملMultiagent Simple Temporal Problem: The Arc-Consistency Approach
The Simple Temporal Problem (STP) is a fundamental temporal reasoning problem and has recently been extended to the Multiagent Simple Temporal Problem (MaSTP). In this paper we present a novel approach that is based on enforcing arc-consistency (AC) on the input (multiagent) simple temporal network. We show that the AC-based approach is sufficient for solving both the STP and MaSTP and provide ...
متن کاملDesigning a Meta-Heuristic Algorithm Based on a Simple Seeking Logic
Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of similarities to the real world. Hence, most of the problems have complicated structures. Traditional methods for solving almost all of the mathematical and optimization problems are inefficient. As a result, meta-heuristic algorithms have been employed increasingly during recent years. In thi...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملSolving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کامل